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Zero-range processes, in which particles hop between sites on a lattice, are closely related to rewiring
networks, in which rewiring of links between nodes takes place. Both systems exhibit a condensation transition
for appropriate choices of the dynamical rules. The transition results in a macroscopically occupied site for
zero-range processes and a macroscopically connected node for networks. Criticality, characterized by a scale-
free distribution, is obtained only at the transition point. This is in contrast with the widespread scale-free
complex networks. Here we propose a generalization of these models whereby criticality is obtained through-
out an entire phase, and the scale-free distribution does not depend on any fine-tuned parameter.
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Many driven, nonequilibrium models reach a critical or
scale invariant steady state only when their dynamical pa-
rameters are fine tuned to reach a phase transition point.
Examples include a wide range of systems such as jamming
in traffic �1�, coalescence in granular gases �2�, gelation in
networks �3,4�, and wealth condensation in macroeconomics
�5�. In all these systems one has a condensation phase tran-
sition which we shall discuss in detail below. In other non-
equilibrium models, for example in driven lattice gases and
sandpile models �6,7�, it has been argued that scale invari-
ance and power-law distributions are generic, or at least one
may have scale-free distributions across wide regions of the
parameter space rather than just at critical points. This phe-
nomenon has been termed self-organized criticality.

In recent years considerable attention has been given to
the study of complex networks. Networks, defined as collec-
tions of nodes connected by links, are found in many fields
of study, ranging from molecular biology to social commu-
nities and the Internet �8,9�. With each node one associates a
degree k which is the number of links connected to it. In
general links may be directed or they may carry a weight;
however, for our purposes we do not consider such features.
It has been observed that very often complex networks are
characterized by a degree distribution p�k� which decays al-
gebraically for large k �8,9�. These networks, termed scale-
free networks, are indeed critical, suggesting the existence of
a mechanism which drives them to this state. Subsequently,
dynamical processes for growing networks have been pro-
posed in which nodes and links are continually added to the
network with some predetermined rates �3,11�. The mecha-
nism of linear preferential attachment, wherein new links
attach to nodes with probability proportional to the degree of
the nodes, results in a critical distribution for a wide range of
the dynamical parameters �11�. On the other hand rewiring
networks �9,12�, whose dynamics constitutes rewiring pro-
cesses with a fixed number of nodes, exhibit a critical distri-
bution only at a critical point. This transition corresponds to
condensation �also known as gelation� where a single node
captures a finite fraction of the links.

Instructive insight has been gained into the condensation
transition through the analysis of simple interacting particle

systems �13–15�. These systems form fundamental models
which may be mapped onto particular applications. For ex-
ample, the zero-range process �ZRP� �16� is a particularly
simple and exactly soluble model in which each site � of a
lattice contains an integer number of particles n� and par-
ticles hop to a neighboring site with rate u�n��. This model is
closely related to the dynamics of rewiring networks �12�.

Condensation occurs in the ZRP when the hopping rate
u�n� decays slowly enough with n, the number of particles at
the site. The transition occurs on increasing the global con-
served particle density �=N /L where N is the number of
particles and L is the number of sites. Then below a critical
density �c particles are thinly spread over all sites, but for
���c a finite fraction of the particles condenses onto a
single site. It has been shown �for a recent review see �13��
that condensation occurs if u�n� decays asymptotically to
some finite value �, as u�n����1+b /n� with b�2. In this
case one finds that for ���c, the steady state probability that
a site contains n particles, p�n� decays exponentially and the
system is in the low density, fluid phase. At the critical den-
sity, �c, one has a power-law distribution p�n��n−b, thus a
critical fluid. Above �c, in addition to the power law, a piece
of p�n� emerges centered about n=L��−�c�; this piece rep-
resents the condensate �15� and contains the excess density.
Thus the condensed phase corresponds to a critical fluid co-
existing with a condensate. Only at criticality does one have
a pure power-law distribution. The same condensation be-
haviour is seen in the degree distribution of rewiring net-
works with preferential attachment �9�.

In this work we investigate how nonconservation affects
the condensed phase of the ZRP. We show that the introduc-
tion of nonconservation in an appropriate fashion modifies
the condensed phase into a scale-free phase by effectively
suppressing the condensate and leaving the critical fluid.
Thus a critical phase emerges as opposed to the conserving
ZRP where criticality is only seen at a specific �conserved�
density �c. Using the relation to rewiring networks, through
which the nonconservation corresponds to creation and anni-
hilation of links, we show that the model provides a mecha-
nism for generating power-law degree distributions. Thus,
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this mechanism plays a similar role in rewiring networks to
that of linear preferential attachment in growing networks.

We begin by elucidating the mechanism for the generation
of a critical phase within a generalized ZRP. Consider a lat-
tice of L sites upon which reside a number of particles. With
rate u�n�� �probability per unit time� which depends on the
occupation n� of site �, a particle is transferred from site �
to another site. We consider a fully connected geometry,
where the destination site is chosen randomly from the other
L−1 sites. In addition to the hopping dynamics, particles are
added to site � with a constant rate c, or removed with a rate
a�n��, which increases with the site occupation n�. Thus, our
choice for the dynamical rates is given by

n,m → n − 1,m + 1 with rate u�n� = �1 +
b

n
���n� ,

n → n + 1 with rate c = � 1

L
�s

,

n → n − 1 with rate a�n� = � n

L
�k

, �1�

where b, s, and k are positive parameters, and ��n� is the
usual Heaviside step function. Although the creation and an-
nihilation might seem arbitrary, they in fact emerge quite
naturally. The case k=1 corresponds to particles being anni-
hilated independently, with order one annihilation events per
unit time over the system. Including k as a parameter allows,
for example, preferential annihilation at sites with large oc-
cupancy. The creation rate c does not depend on n but does
depend on the system size L. This allows the overall creation
rate in the system, which may be thought of as a driving rate,
to be controlled. Also note that our results will hold for other
choices of the rates which share the same asymptotic behav-
ior �1�.

The dynamical rates are conveniently implemented by us-
ing a random-sequential updating scheme, whereby at each
time step a site � is chosen at random, and a hop, annihila-
tion or creation event may occur with relative probabilities
given by the rates �1�. To be explicit we consider the case
b�2, although a similar analysis may be carried out for b
�2 �10�.

In Fig. 1 we compare the particle number distribution
p�n� of our model with that of the ZRP with conserving
dynamics. It is clearly seen that for this choice of parameters,
the creation-annihilation dynamics can selectively destroy
any condensate and sustain the power-law distribution, cor-
responding to the critical fluid. In what follows we analyze
the model showing that this feature holds for an entire region
in the parameter space.

The steady state of the model is fully described by the
probability distribution P�n1 ,n2 ,… ,nL� over all possible
configurations. In contrast to the conserving ZRP �16�, the
steady state distribution of the model �1� does not factorize
generally. However, we make the mean field approximation
that the steady state distribution does factorize, i.e.,

P�n1 ,n2 ,… ,nL�→�i=1
L p�ni�. Due to the fully connected ge-

ometry we expect this approximation to become exact in the
limit L→�.

Using this approximation, the steady state master equation
is given by

0 = �u�n + 1� + a�n + 1��p�n + 1� − �� + c�p�n�

− 	�u�n� + a�n��p�n� − �� + c�p�n − 1�
��n� . �2�

Here the current � is given by

� = �
n=1

�

u�n�p�n� . �3�

From Eq. �2� it follows that

p�n� =
�� + c�n

�
m=1

n

�a�m� + u�m��

p�0� . �4�

Note that this is not a closed solution as � depends on p�n�.
The values of � and p�0� should be set such that both the
normalization condition 1=�n=0

� p�n� and the creation-
annihilation balance condition

c = �
n=1

�

a�n�p�n� �5�

are obeyed. We now identify the three phases of the model
by determining the asymptotic, large L behaviors of p�n� and
� that satisfy Eqs. �3� and �5�. The emergent phase diagram
is summarized in Fig. 2. Deferring details to a later publica-
tion, we find the following results.

Low-density phase, s�k. Rewriting Eq. �5� as Lk−s

=�nkp�n� implies p�n� is a rapidly decreasing function of n,
and the steady state density � is 	1. Thus, p�1����Lk−s

and in the thermodynamic limit the density goes to zero.

FIG. 1. Steady state distribution of the nonconserving ZRP
�black solid line� and the conserving ZRP �gray dotted line�. The
data are from simulations run on a system of size L=104, with b
=2.6, k=3, and s=1.96. In the conserving model the particle density
was set to �=4��c. The peak at high occupation number, which
exists only in the conserving model, corresponds to the condensate.
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For s�k the sum in Eq. �5� is controlled by the behavior
of p�n� at large n. We find the following regimes.

High-density phase, s�k / �k+1�. Here

p�n� � n−bexp�g1
n

Ls −
nk+1

�k + 1�Lk� , �6�

where g1 is a constant. Thus p�n� is strongly peaked at n
�L1−s/k. This is the high density phase, where all sites are
highly occupied. Note that the mean number of particles in
the system, N�L2−s/k is superextensive.

Critical phase, k�s�k / �k+1�. In this phase the system
relaxes to the critical density, and p�n� takes an algebraic
form. However, for large but finite systems two sub-phases
are observed, distinguished by the finite-size corrections to
the dominant power law.

For k�s�kb / �k+1�

p�n� � n−bexp�− g2
n

Lx� , �7�

where x= �k−s� / �k−b+1� and g2 is a constant. This cuts off
the power law at n�Lx. We refer to this as critical subphase
�a�.

For kb / �k+1��s�k / �k+1�

p�n� � n−bexpn�d ln L

L
�k/�k+1�

−
nk+1

�k + 1�Lk� , �8�

where d=b−s�k+1� /k. Here, on top of the algebraic part,
p�n� is weakly peaked at n�Lk/�k+1��ln L�1/�k+1�. This peak
will diminish as L→�. We refer to this as critical subphase
�b�.

It is interesting to note that throughout critical subphase
�a� the overall density �=�dn np�n� is given by the critical
density corresponding to p�n��n−b. However in critical sub-
phase �b�, the density is controlled by a contribution from the
weak peak. For bk / �k+1��s�2k / �k+1� the contribution of
the weak peak to the density vanishes and the density is the
critical density �c as in subphase �a�. However, for 2k / �k
+1��s�k / �k+1� the contribution from the weak peak to

the density diverges as L2k/�k+1�−s making the number of par-
ticles in the system superextensive.

In Fig. 3 we present typical data obtained from numerical
simulations in the different phases and compare with theo-
retical curves of p�n�. We found that in all phases, starting
from random initial configurations of various densities, the
system relaxes toward its expected steady state density.
However, for the low-density phase the time scales for full
relaxation were prohibitive and we do not present steady
state data for this phase. In Fig. 3 we also provide data for a
one-dimensional �1D� model, where sites are arranged in a
1D array, and particles are allowed to hop only to the right
neighbor of the departure site. For the 1D geometry the
mean-field approximation is not expected to be exact even in
the limit L→�. Nevertheless, we find numerically that the
three phases discussed above exist also in the 1D model.

We now apply the approach discussed above to rewiring
networks. To make the analogy with the ZRP, one identifies a
site of the ZRP and its occupation number with a node in the
network and its degree, respectively. We define a network
model which incorporates both rewiring and creation-
annihilation dynamics, and show how a proper choice of
rates leads to the existence of a critical phase, much like that
of the nonconserving ZRP, within which networks are scale-
free. Due to the introduction of annihilation of links, there is
no simple mapping from the ZRP to the network model since
this would require keeping track of pairs of linked particles
in the ZRP. However the two systems are closely related and
as we shall see share the same phase diagram.

We consider a network of L nodes which are linked to-
gether by an integer number N /2 of undirected links �N is
the number of particles in the corresponding ZRP�. With rate
u�n��=1+b /n� one of the n� links is disconnected from
node � and is rewired to another randomly chosen node.
This does not change the number of links in the network.
With rate a�n��= �n� /L�k one of the links connected to node
� is removed from the network. In addition, a new link is
created between node � and another randomly chosen node

FIG. 2. Typical phase diagram of both ZRP and network models
in the k-s plane with b fixed. k ,s ,b are defined in Eq. �1�.

FIG. 3. Steady state distributions from simulations of the ZRP
model on a fully connected lattice �+� and a 1D lattice ���, com-
pared with the theoretical asymptotic curves. Here L=5000 and b
=2.6, k=3. Dashed curve is critical subphase �a� �s=2�; dotted
curve is critical subphase �b� �s=1.2�; full line is high-density phase
�s=0.4�.
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at a constant rate c=1/Ls. For simplicity, here we allow mul-
tiple links between the same two nodes and self-connections
to occur. Again the dynamics is conveniently implemented
by choosing a node � randomly at each time step, and
changing the wiring with probabilities constructed from the
relevant rates.

The mean-field master equation for the network model
differs slightly from that of the ZRP �2�, and is given by

0 = �a�n + 1� + u�n + 1� + 
�n + 1��p�n + 1� − �a�n� + u�n�

+ 
�n��p�n���n� − �� + 2c�p�n� + �� + 2c�p�n − 1���n� .

�9�

Here �=�u�n�p�n� as before, and


�n� =
n

N
�
l=1

�

a�l�p�l� = c
n

N
. �10�

The steady state solution to Eq. �9� is given by

p�n� =
�� + 2c�n

�
m=1

n

�
�m� + a�m� + u�m��

p�0� . �11�

The main difference between �11� and the ZRP result �4� lies
in 
�n� and its dependence on the total number of links in
the system. This complicates the analysis slightly; however,
all phases persist including the critical phase �10�. Thus the
phase diagram in Fig. 2 also describes the network model:
the low-density and high-density phases characterize ex-
tremely sparse and dense networks; the critical fluid corre-
sponds to a scale-free phase in the thermodynamic limit. Ex-
amples of the degree distribution in the critical phase are
given in Fig. 4, where we present data obtained from simu-
lations of systems of increasing sizes. The power-law regime
increases with system size.

Further interesting observations are that the weak peak of
p�n� in critical subphase �b� may correspond to a number of
highly connected nodes but is distinct from a condensate.
This would correspond to a large number of hubs in the
network. Also, in the network model the suppression of
events which link nodes to themselves or produce multiple
links between the same two nodes may have a considerable
effect on the results �17�. In the present model an additional
cutoff is introduced into p�n� and this can become the domi-
nant scale. A full analysis will be published elsewhere �10�.

Our main interest in the systems studied lies in the emer-
gence of a critical phase which we have shown exists for
annihilation and creation indices k ,s in the range k�s

�k / �k+1�. We conclude by comparing the critical phases we
have identified to the critical points of the corresponding
conserving ZRP and network models. In the latter, the aver-
age particle/link density � is an external parameter. A power-
law distribution of the occupation number/degree is only ob-
tained at �=�c. In contrast, in the nonconserving models we
have studied, a power-law distribution is obtained throughout
the critical phase. In critical subphase �a� and in part of criti-
cal subphase �b� the steady state density is set by the dynam-
ics to be �c. However in the other part of critical subphase
�b� the weak peak gives a diverging contribution to the den-
sity.

In models exhibiting self-organized criticality, a critical
phase is typically obtained only when the driving rate of the
system vanishes with the system size �18,19�, in order to
ensure relaxation between stimuli. In comparison, in the
present work the creation rate c in, e.g., Eq. �1�, vanishes in
the large L limit whereas u, the hopping or rewiring rate,
does not vanish. Thus, there is a separation of time scales in
the dynamical processes. On the other hand, there are no
obvious avalanches or underlying absorbing states which are
features usually associated with self organized criticality
�20�.
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